

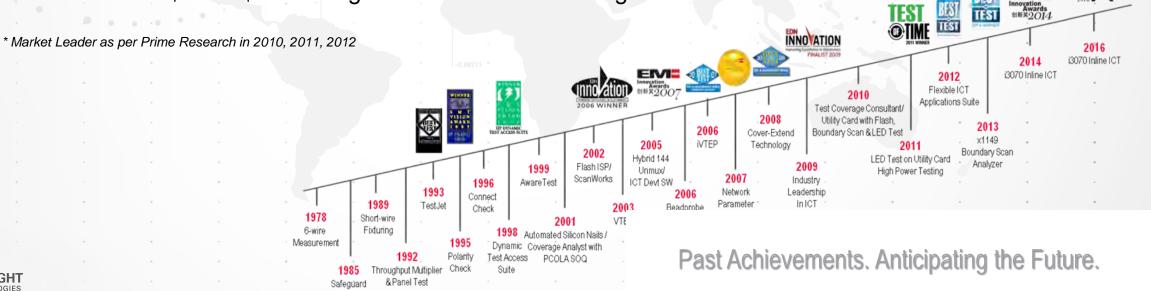
Factors to Consider for Inline ICT Automation

Keysight Technologies

Quek Keng Kiang

Consistent Market Leader

The Trusted Partner in Test


#1 in Market Share*

EYSIGH

Over 6000 Systems deployed Globally

Preferred Supplier For many of the Global OEMs, CEMs and ODMs

Products in the \$75k - \$500k range suit all needs and budgets

Full Options for Inline ICT Applications

	i3070 S5i	i3070 S5i Lean	i3070 S5i 4Mod
Max Node Counts	2592	2592	5184
	2 Cores	2 Cores	4 Cores
Parallel Testing	2x1296	2x1296	4x1296, 2x2592
	2507	299	
DUT size(mm)	350x350	410x380*	711x609
DUT Weight	3Kg	3Kg	15Kg
Infeed buffer	YES		
Dual Lanes	No	YES	No
Foot Print(mm)	1206×900×1860	800x1400x1900	1800x1350x1930
Pressing force	10KN	10KN	20KN
Fixture ID	200x	200x	200x
	Left-in Right-out	Left-in Right-out	Left-in Right-out
Direction	Right-in Left-out	Right-in Left-out	Right-in Left-out
	(factory set)	(user set)	(user set)
Flow and Position			

1000SPF offline	i1000SPF inline	i1000SPF inline 4Core	i1000 inline 8Core
1664	1664	2560	5120(option)
1 core	1 core	4 cores	8 cores
	1.11	2x1024, 4x512	8x512
1664	1664	An alt an alt and alt	
430x300	430x300	430x300	620x508
3Kg	3Kg	3Kg	6Kg
No	No	No	No
No	No	No	No
850x900x1900	850x900x1900	850x900x1900	1200x1400x1900
7KN	7KN	7KN	15KN
1 1	-		
. and and a fill	Left-in Right-out	Left-in Right-out	Left-in Right-out
upgrade	Right-in Left-out	Right-in Left-out	Right-in Left-out
	(user set)	(user set)	(user set)

*410x380 for system w single lane 350x350 for system w dual lanes

i3070 Series 5*i*

- Standard 2-Module Inline System

Robust. Advanced. Reliable

- 2-Module configuration, 2592 nodes
- Programmable press height delivering up to 10KN force
- Identical features and performance w.r.t. i3070 Series 5
- Shares i3070 Series 5 hardware, interchangeable
- Supports dual stage testing
- Advanced automation and safety options available

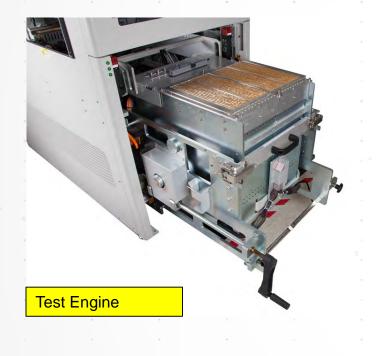
i3070 Series 5*i*

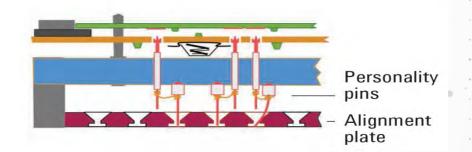
- Lean 2-Module Inline System

Lean. Flexible. Automated.

- Full fixture compatibility with the standard i3070 Inline system
- 0.8m by 1.4m footprint to ease production floor planning
- Changeable conveyor flow directions, easy to integrate into different SMT line layouts
- Built-in bypass conveyor, allows board to move to downstream equipment without delay
- Test larger board up to 410 mm x 380 mm

Lean Foot Print


Save space and better mobility

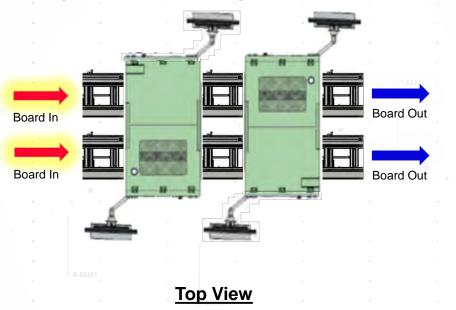


System Overview Test Engine

- 1. Industry-leading ICT measurement electronics
- 2. Supports short wire fixture
 - Preserving transportability, repeatability and stability

Short-wire Fixturing Technology

- 3. Enhanced support structure to ensure co-planarity
- 4. Unique design enable easy maintenance



7

Possibilities

8

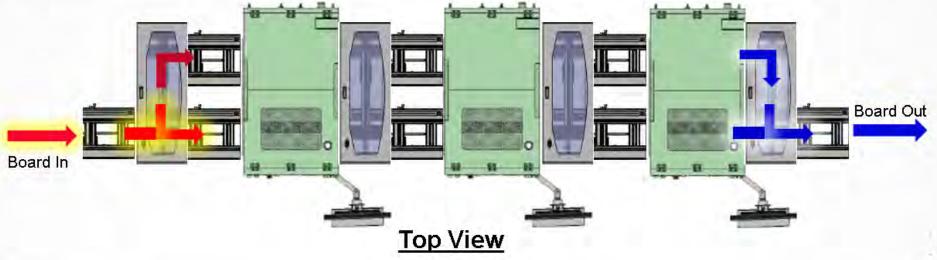
i3070 Lean Inline with Bypass Conveyor

Application Scenario

- Dual Lane setup
- Limited floor space availability
- Excellent, stable yield
- Medium/Low node counts

Solution

Inline ICT testers placed in opposite directions


8

- Built-in bypass conveyor used for board transportation
- Buffer conveyors can be replaced with Traversers

Possibilities

i3070 Lean Inline with Bypass Conveyor

Board Out

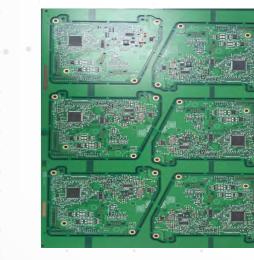
5

Application Scenario

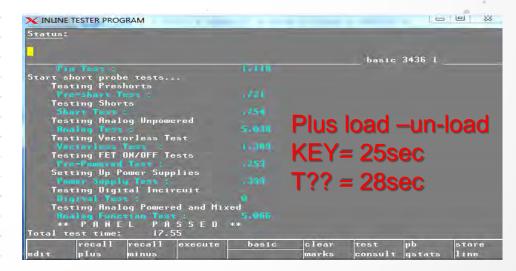
- High volume, low mix
- Excellent, stable yield
- Medium/Low node counts
- Upstream run rate faster than ICT

Solution

- Multiple inline ICT testers for line balancing
- Traverser conveyors transport boards to available testers



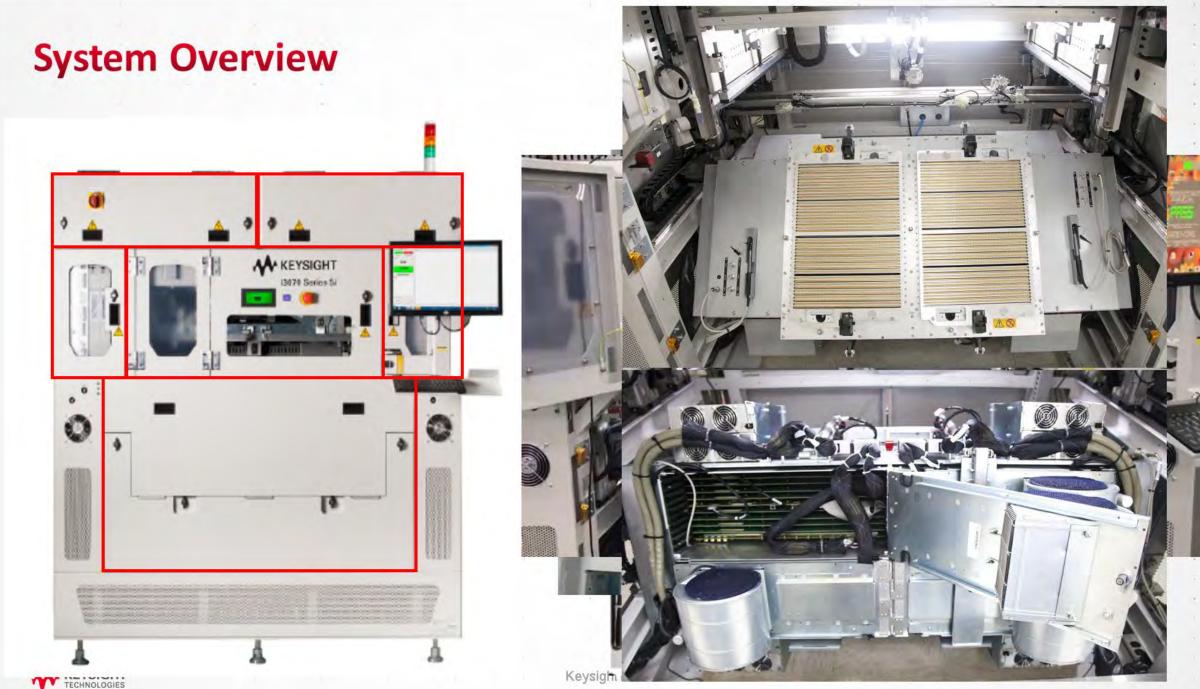
i3070 S5i Benchmarking with other Inline ICT


10

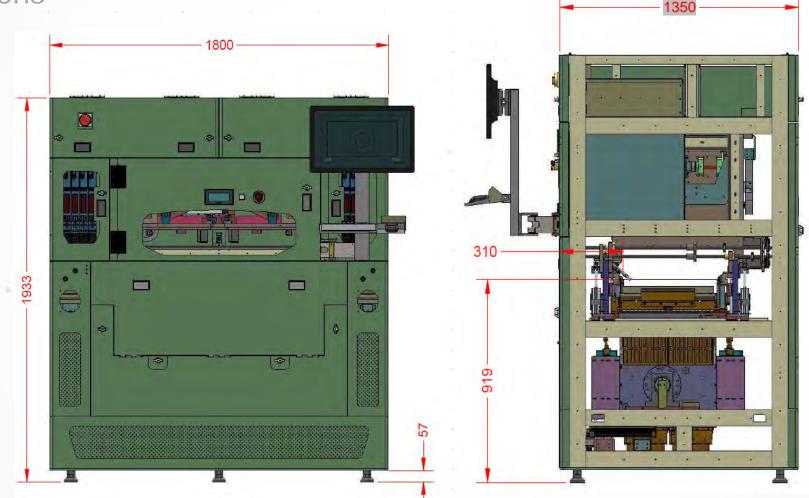
]	Keysi	ght			
	CUS	TOMER:						
DEL NA	AME(PCB	NAME):	38202120)				
	FIXTUR	E TYPE:	Keysight	i3070 S5	Inline			
PRC	JECT MA	NAGER:	Sui Bin					
		DATE:	9/23/2016	ó				
	PCB SIZE: 106mm*134mm							
	PANEL SIZE: 387mm*279mm				Total	6 Pane	1 DUTs	
Α.	Test Prob	e Analys	is		-			
	TOP	100 mil	75mil	50mil	39mil	other		
		16						
	BOTTOM	100 mil	75mil	50mil	39mil	other		
		155	55					
	SUM						226	Include Power

Both are in 2 Up parallel test

CA TYPE	KEY	TER	COMMENTS	
NODES	207	195		
RES	93	90	R508,R536,R537	
CAP	56	45	C121,C122,C515,C536,C62,C63,C64,C819,C820,C821,C822	
IND	7	5	L507,L508	
DIODE	10	10		
MOSFET	6	5	M506	
NPN	3	3		
IC	8	0	U336,U337,U338,U401,U506,U636,U811,U812	
Crystal	1	0	Y431	
	Co	mponen	t Coverage Summary	
Total Stuffed In BOM	240	240		
Total NO TEST	2	88	We have 2 unstable small CAP (C61, C519) commented out, same as TER	
BYPASS CAP Tested In Parallel	54	3	We have 54 BYPASS CAP Coverage, but TER Report only showing 3	
Total Tested (w/o BYPASS CAP)	184	158		
Total Tested (with BYPASS CAP)	238	161		
Comp Coverage (w/o BYPASS CAP)	76.67%	<mark>65.83%</mark>		
Comp Coverage (with BYPASS CAP)	99.17%	67.08%		

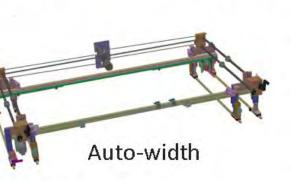


i3070 4-Module Series 5 for Big Boards - i367x, Series 5i



i3070 4-Module Series 5

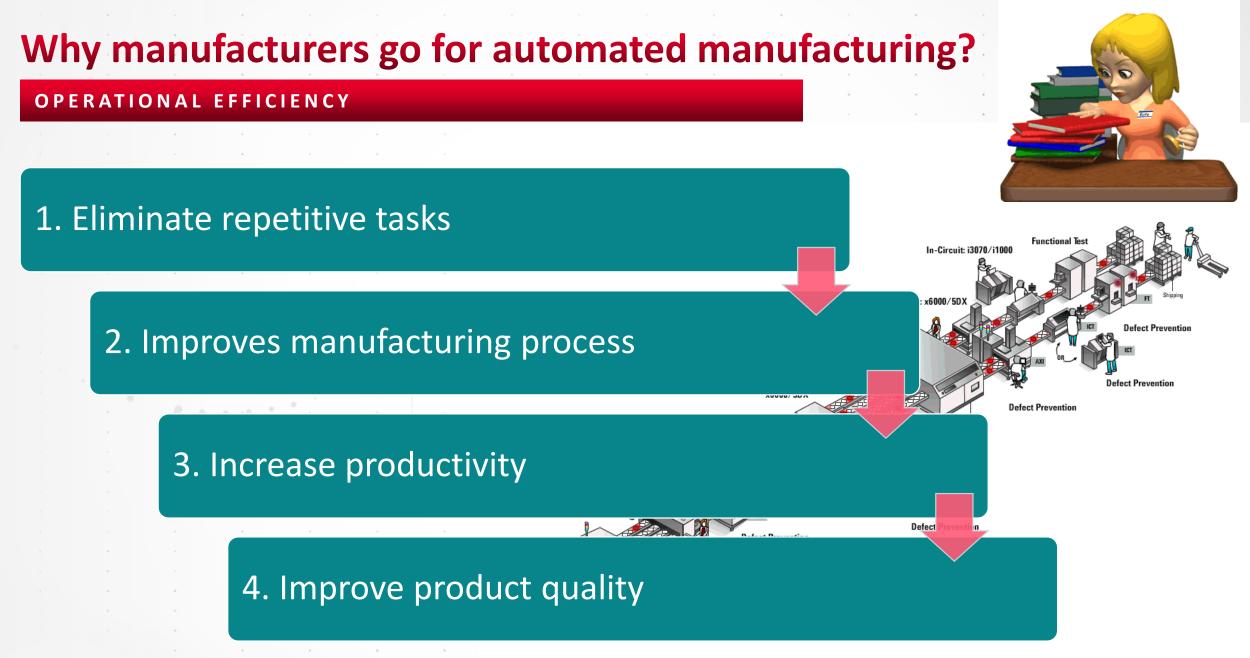
Dimensions



Smaller Footprint

- 1. 23% shorter in length than E9903E (minus Support bay)
- 2. Unified Inline platform share > 50% of common parts

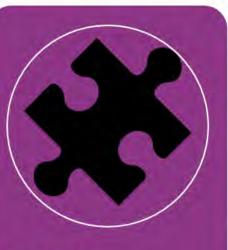
PLC


General Specification

Datasheet:

https://literature.cdn.keysight.com/litweb/ pdf/5991-2686EN.pdf?id=2384839

Specifications	Units	E9988E	E9988EL	E9986E
		2-module Standard	2-module Lean	4-module
Dimensions (excluding	mm	1206 (L) x 900 (W) x 1860 (H)	800 (L) x 1400 (W) x 1900 (H)	1800 (L) x 1350 (W) x 1930 (H)
beacon and LCD panel)	inches	47.5 (L) x 36.6 (W) x 73.2 (H)	31.5 (L) x 55.1 (W) x 74.8 (H)	70.8 (L) x 53.1 (W) x 77.1 (H)
Number of test nodes	-	2,592 maximum		5,184 maximum
PCB size	mm	Min: 50 (L) x 60 (W)	Min: 50 (L) x 60 (W)	Min: 50 (L) × 60 (W)
		Max: 350 (L) x 350 (W)	Max: 410 (L) x 380 (W) 1	Max: 711 (L) x 609 (W)
	inches	Min: 2 (L) x 2.4 (W)	Min: 2 (L) x 2.4 (W)	Min: 2 (L) x 2.4 (W)
		Max: 13.8 (L) x 13.8 (W)	Max: 16.1 (L) x 15.0 (W) 1	Max: 28 (L) x 24 (W)
PCB thickness	mm	Min: 0.6, max: 4		Min: 0.8, Max: 8
	inches	Mîn: 0.02, max: 0.16		Min: 0.02, Max: 0.31
Maximum supportable	kg	3		15
PCB weight	lb	6.6		33
PCB edge support	mm	2,3		3, 5, 10
	inches	0.079, 0.12		0.12, 0.2, 0.39
Component clearance	mm	Top: 90, bottom: 30		
	inches	Top: 3.5, bottom: 1.2		
Transport method		Belt transfer		
Transport direction	÷	Left to right or right to left	Left to right or right to left	
		(factory configured)	(User-configurable direction)	
Transport speed	mm/sec	Min: 100, max: 400		
	in/sec	Min: 3.9, Max: 15.7		
Transport height	mm	Min: 900, max 1000 ²		Min: 925, max 1000
	inches	Min: 35.4, max: 39.4 ²		Min: 36.4, max: 39.4
Bottom fixture height	mm	Min: 75, max 105		
	inches	Min: 2.9, max: 4.1		
PCB exchange time	sec	5 to 8		8 to 12
Press force	kN	10		20
	lbf	2,248		4,496
Air pressure	kPa	500 to 700		
	psi	72.5 to 101.5		
Power	÷-	3-phase, DELTA; supports 200 -	400 VAC	
		3-phase, WYE; supports 208 – 22	20 VAC	
		3-phase, WYE with neutral; supp	orts 220/380 – 240/415 VAC (Line-to	-neutral/Line-to-line)


KEYSIGHT TECHNOLOGIES

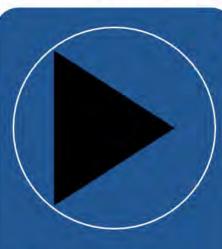
How E9986E accelerate the customers' automation requirements?

Fully automated

- Migrate labor shortage
- High utilization rate (24 x7)

<u>Scalable</u>

- Nodes
- Board size
- Dual Boards testing


COMPETITORS

Manual intervention < 15" x 14"

Thru'put

- Module TM
- Bank TM (coming soon)
- Parallel load/unload
- Buffer Zone (evaluating)
- Flash Port (PLHE project)

Inline to Offline Solution

• Offline fixture adapter

COMPETITORS

Ease of Maintenance

- Integrated testhead/handler design
- Robust and reliable design
- Motorized Testhead rotation
- Dual programmable rails
- Front facing access

Eliminate Pneumatic Fixture

SERVO DRIVEN PRESS

Customer: "I am paying too much for my pneumatic fixture"

New way: Servo driven Press

- Eliminate the need of expensive pneumatic fixture (~ saving range from \$4k to \$8k* per fixture)
- 13 to 25 fixtures = breakeven (Handler cost)

BENEFIT: Saving from the pneumatic = ROI

- Uniform press down action 3.
 - a. Ensures even contact between test pad and probe (less debug required, shorter development time)
 - **b.** Even distribution of forces (does not stress the DUT)
 - c. Longer lifespan for probes (lower maintenance cost)

* Savings will vary depending on complexity of the product to be tested

20% More Productive than E9903E


MORE THROUGHPUT

Customer: "I need x numbers of ICT to match the output from my SMT line"

New way: Go Inline

BENEFIT:

Lower CAPEX investment

From Inline to Offline

FLEXIBLE

Customer: "My manufacturing line is dedicated to a specific product"

New way: Offline Fixture Adapter

- 1. Allow Inline fixture to be re-usable at Offline i3070
- 2. Available from fixture partners (many choices)

BENEFIT:

Same fixture can be used at Inline & Offline i3070

Reusable Inline fixture at Offline System

Challenges:

- How to retest board return / after board repaired?
- Huge capital for fixture house, debug after fixture built

Impact:

- Project delay due to system not available.

Our Solution:

- Built-in reusable offline fixture concept

Pro & Con
Easy Setup Multiple investments Use 2 set of fixture accessories Use Vacuum port
Heavy, may have challenge One time investment Use 1 set of fixture accessories Vacuum Port Not necessary

Offline Press

Convertible Top Clamp; Same bottom fixture base

What is special in 4 Module inline i367x?

Module TM + Bank TM + Combined Resource

Dual - Moveable Conveyor Auto Width

Super Large Board 711mm*609mm

Inline-Offline Compatible Fixture

Software Readiness for fixturing

AUTOMATIC PLACEMENT

i3070 Software Revision !!

- 1. 09.10sc
- 2. 09.20p or latest

Available in Partner Portal or KSM on May '18

1. "Inline-4MOD" – 28" x 17.7" 2. "Inline-4MODXL" - 28" x 24"

Additional Info:

- 1. Belt Exposure/PCB board edge
- 2. Front Rail Offset

X Fixture Options Form	-		×
Actions			Help
Notes:			
Fixture Type: Inline-4MOD 📼	Siz	ze: F	ull 📼
Electrical Top Probes Allowed: No			
Confine Transfers To Assigned Mo	dules	No	
Default Probe Type for TestJet/VTE	P Dev	vices A	Added by
Board Consultant: Auto	Selec	tion	
Wire Wrapping: Aut	io i	-	
Metric Units: No 💷	-		
Heavy Probe Force: 8	Oz.		
Light Probe Force:	Oz.		
Mechanical Probe Density: 800	Oz.l	Sq.In.	
Vacuum Probe Density: 104	Oz.l	Sq.In.	
Autofile: 3463			
Rail Offset: 0 1	mm.		
Belt Exposure: 3	mm.		
Update			Close

PCB Edge Support

COMPETITORS

E9986E-ES1; E9986E-ES2; E9986E-ES3

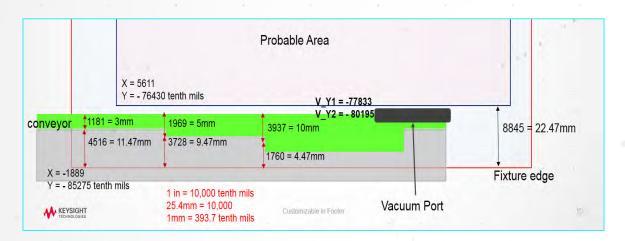
PCB edge support	Handling weight
3 mm (0.1181 in)	< 3 kg (6.6 lbs)
5 mm (0.1968 in)	3 – 7 kg (6.6 – 15.4 lbs)
10 mm (0.3937 in)	7 – 15 kg (15.4 – 33 lbs)

Challenges:

- Heavy boards, more grip > Lighter boards
- High Mixed, different boards weight and edge support

Impact:

- board fall, Stop-Short
- Transfer not smooth due to "catch" area insufficient
- System Error and Lost production output


Our Solution:

- configurable of belt Exposure
- Changeable by user

Automatic Conveyor Width

E9986E-A01

Zero OFFSET	"X" OFFSET
Probable Area Maximized	Optimized Probable Area
Test Probes May lean into vacuum port area	Test Probes avoided into Vacuum port Area
Work with Offline Press Only	Work with Convertible fixture and Offline Press

Challenges:

 Test Probes potential occupy Vacuum port area for Offline usage

Impact:

- Unable to use vacuum for Convertible fixture.

Our Solution:

- Both conveyors is moveable/programmable
- Front Rail Offset

COMPETITORS

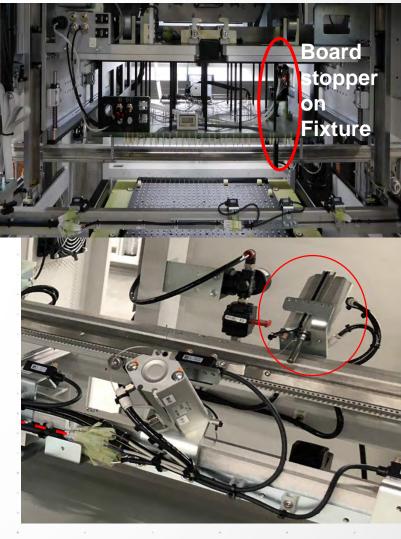
Board Stopper Options

E9986E-BSF ; E9986E-BSR

Challenges:

- Very limited setup time during production change-over
- Potential skew for large width board

Impact:


- Change over take longer, lost of throughput. Technician may forget to adjust board stopper.
- Board may damage if skew effect is too much

How to overcome?

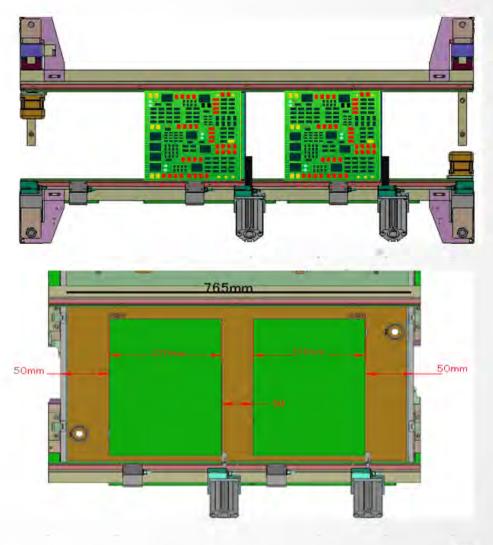
- 1. Minimize fixture setup time without the need to adjust board stopper. Alternate 1
- 2. Board Stopper position near centre edge of the board. Alternate 2

Alternate:

- 1. Fixed board stopper location permanently.
- 2. Additional board stopper (E9986E-BSR) on the rear conveyor rail.

customizable in Footer

Dual Board Staging and Testing


Our Solution:

- Additional stopper to stage board/panels, test with Throughput Multiplier or Advanced Throughput Multiplier
- Advantage for board with test time > loading time, throughput increase by 1.5x (96s / 64s)

Example:

loading/unloading per board: 8s Test time/board: 40s TM for 2 boards (assume 80% reduction): 40 x 1.2 = 48s

Non-DBST: (40 + 8) x 2 = 96s DBST: 8x2 + 48 = 64s

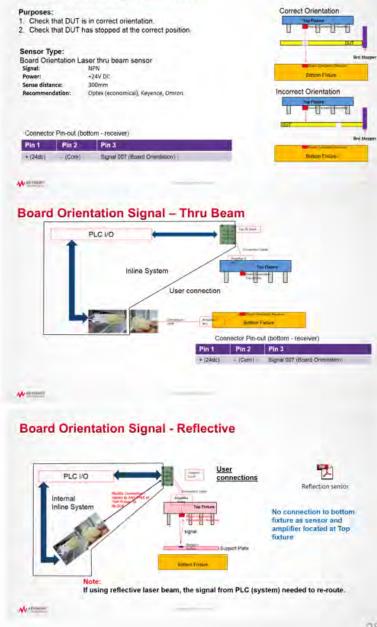
Board Orientation

Challenges:

- Board get damaged
 - Wrong board
 - Wrong orientation

Impact:

- Product Yield Lost, Lost of Revenue
- Scrap, Lost of Profit


How to overcome?

- Check for correct orientation before Press.

Note:

- 1. Not a concern for symmetrical panel
- 2. May be redundant as barcode read will fail verify
- 3. Handling time increase if enabled

Board Orientation Signal (007)

Board Alignment Signal

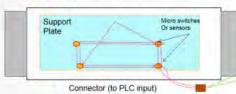
Challenges:

- Board get Damaged
 - Alien object on the fixture
 - Skew effect

Impact:

- Product Yield Lost, Lost of Revenue
- Scrap, Lost of Profit

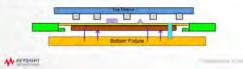
How to overcome?

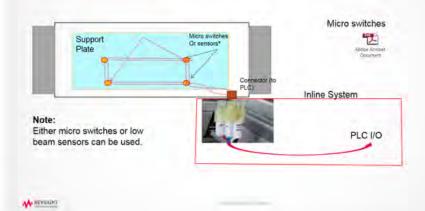

- Check for Alignment or board sitting before Press.

Note:

1. Handling time increase if enabled.

Board-Alignment Signal (315)

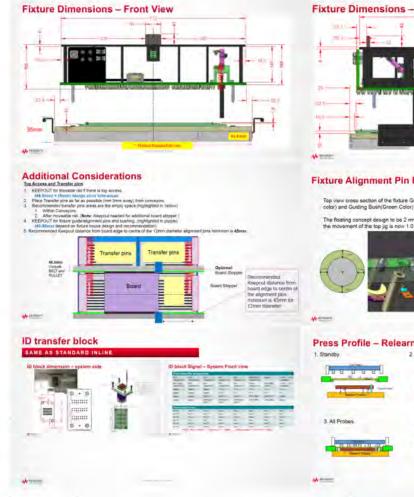

Purpose: Check that DUT sit flatly on the support plate. Sensor Type: Micro switches / Low Beam Laser



PLC checks that board fully sit on fixture support plate before the Press fully engage to All Probes position

Board-Align/Board-Sit position

Board-Alignment sensor



Fixture Guideline

- Top Fixture critical dimension
- Additional Keep out for transfer pins
- Bottom Fixture: Maximum thickness and Height
- Tooling pins clearance consideration
- Floating design for Top Bottom Jig Alignment -
- ID Transfer Block and its pin assignment

Fixture Guideline available in Online Helps Fixture 3D model - upon request.

Both available as standalone files

Fixture Alignment Pin Floating Concept

Top view cross section of the future Guiding Pin/Rod/Grey distance from PCB board edge to centre of the alignment pins imum is 45mm for Alignment pl The floating concept design to be 2 mm clearance and hence the movement of the top jig is now 1.0 mm of 12mm* diamet Press Profile – Relearn for individual fixture 2. Board Alter

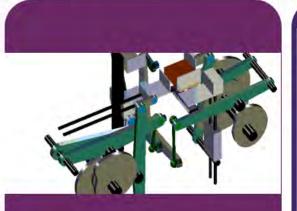
1		and Second and Second and	
	4. Long Probes	5. Retout	
	Constantine server	Ter Di	-

Fixture Partner

READINESS

Fixture partners validated:

- Q1
- QxQ Circuit Check
- Petracarbon
- Testing House
- Bojay
- Megatron


Ameri	ica

SAP

GRC

Summary

Integrated System

- Leverage
- Familiar programming interface
- Robust & Reliable design
- Ease of Use

Cost Saving / Fast ROI

- Eliminates pneumatic fixture (= *ROI*)
- Floor Space & labor
- Improve Productivity
- Improve Quality

- Fixture can be Inline & Offline use

E9986E - Filling in the gaps

Series 6

STAY CONNECTED. CONTINUOUSLY EVOLVING

Series 6

KEYSIGHT

i 3070 Series 6

Medalist i3070 Series 5

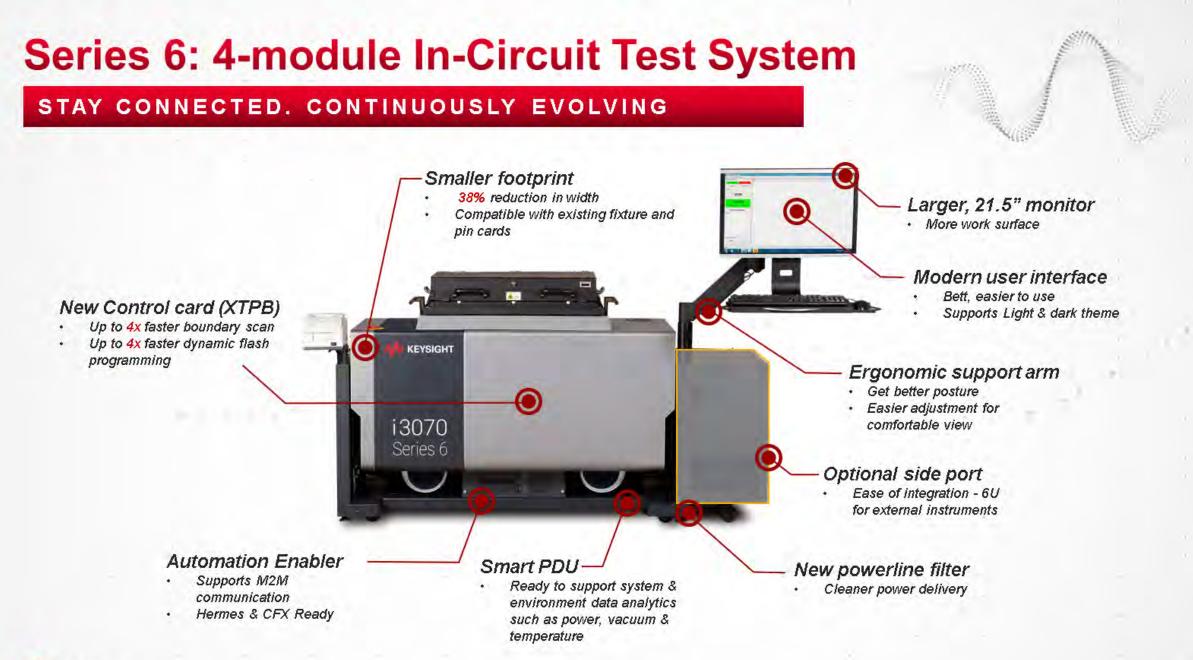
Series 6

STAY CONNECTED. CONTINUOUSLY EVOLVING

- PC & PDU relocated to bottom
- DUT power supplies will now be at the rear of system
- Keysight Corporate color code
- 21.5" monitor
- New ergonomic support arm

Front View

Testhead Dimension	Before	After
Width	1765 mm	1490 mm
Depth	795 mm	940 mm
Height	878 mm	878 mm

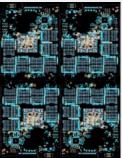

16% width reduction by removing side pod38% without side port & support bay

Series 6: 4-module In-Circuit Test System

STAY CONNECTED. CONTINUOUSLY EVOLVING

Faster Test Throughput

- On average 6 to 12% improvement in overall test time with new XTPB control card
- Digital test execution is expected to be faster e.g. Boundary scan, <u>SiliconNail</u>:
 - Up to 4x faster for dynamic flash programming
 - Up to 4x faster boundary scan


XTPB Throughput Insight

Actual Test Cases: SSD Product Board #1

Test Types	ХТРА	ХТРВ	Throughput enhancement
Preshort	0.218	0.168	22.81%
Short	0.303	0.244	19.60%
Analog	3.526	3.034	13.95%
VTEP	4.565	3.900	14.58%
MOSFET	0.106	0.061	42.80%
Setup Power	1.669	1.604	3.89%
Vreg Voltage	1.500	1.515	-0.99%
Analog Functional	0.286	0.255	10.73%
SPI Flash	29.913	17.148	42.67%
BScan Powered Shorts	2.076	1.186	42.87%
BScan Interconnect	1.055	0.934	11.41%
BScan Connect	1.497	1.048	30.00%
Bscan Silicon Nails	0.001	0.000	87.50%
Digital	0.128	0.104	18.63%
Total test time	46.844	31.202	33.39%

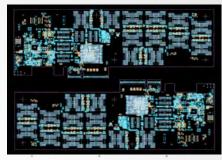
Panel of 4 boards DEVICE TEST RESULTS Nodes (Nets) On The Board : 1353 Total Nodes Tested : 85 Total Devices In Board Data : 715 SHORTS TEST DETAILS Total Nodes In Shorts-Test : 1353

Total Inaccessible Nodes

33.4% Overall Speed Improvement 42% Faster B.Scan Powered Shorts 43%

: 1268

Faster SPI Flash


XTPB Throughput Insight

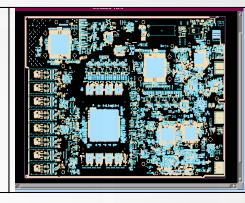
Actual Test Cases: SSD Product Board #2

Test Types	ХТРА	ХТРВ	Throughput enhancement
Preshort	0.500	0.402	19.62%
Short	0.392	0.336	14.42%
Analog	2.379	2.223	6.57%
VTEP	1.960	1.904	2.89%
MOSFET	0.424	0.329	22.33%
Setup Power	1.068	1.005	5.87%
Vreg Voltage	0.000	0.000	0%
Analog Functional	0.104	0.081	21.67%
SPI Flash	2.322	2.169	6.58%
BScan Powered Shorts	0.754	0.621	17.71%
BScan Interconnect	0.452	0.370	18.16%
BScan Connect	2.061	1.032	49.94%
Bscan Silicon Nails	14.484	11.903	17.82%
Digital	1.719	1.665	3.17%
Total test time	28.619	24.039	16.01%

Panel of 2 boards		
DEVICE TEST RESULTS		
Nodes (Nets) On The Board	: 1672	
Total Nodes Tested	: 196	
Total Devices In Board Data	: 793	

SHORTS TEST DETAILS Total Nodes In Shorts-Test : 1672 Total Inaccessible Nodes : 1476

16.01% Overall Speed Improvement 50% Faster B.scan Connect 17.8% Faster Silicon Nails


XTPB Throughput Insight

Actual Test Cases: Comms Server

Test Types	ХТРА	ХТРВ	%Improvement
Preshort	28.06	28.39	-1.2%
Vectorless	1.52	1.47	4.1%
Analog Unpowered	39.76	36.80	7.5%
Pre Power	1.12	1.02	9.3%
Setup P/S	33.44	32.34	3.3%
Bscan Powered Short	4.40	3.34	24.1%
Bscan Interconnect	0.38	0.07	80.8%
Bscan In-Circuit	2.10	0.50	76.2%
Digital In Circuit	2.71	2.01	26.1%
Analog Pwr & Mixed	1.97	1.76	10.9%
Total Test_Section	133.64	122.95	8.0%
Total	139.68	128.89	7.7%

DEVICE TEST RESULTS Nodes (Nets) On The Board: 4808 Total Nodes Tested : 2570 Total Devices In Board Data : 7252

SHORTS TEST DETAILS Total Nodes In Shorts-Test Total Inaccessible Nodes

7.7% Overall Speed Improvement 80% Faster B.Scan Interconnect 76% Faster B.Scan In-Circuit

: 4808

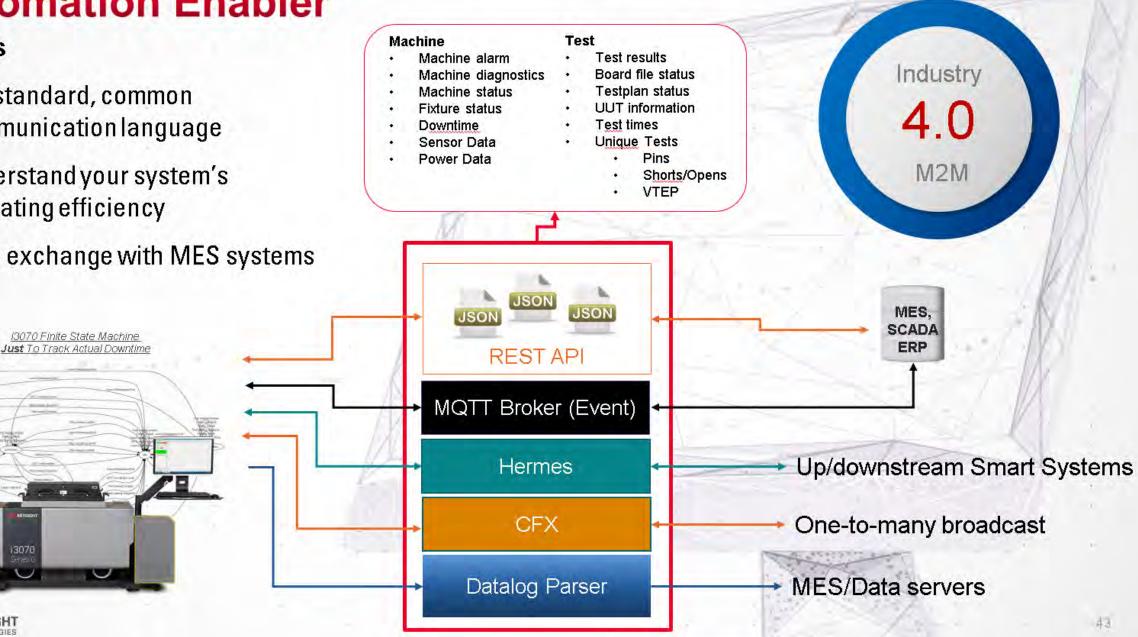
:2238

Slicker Interface - UI

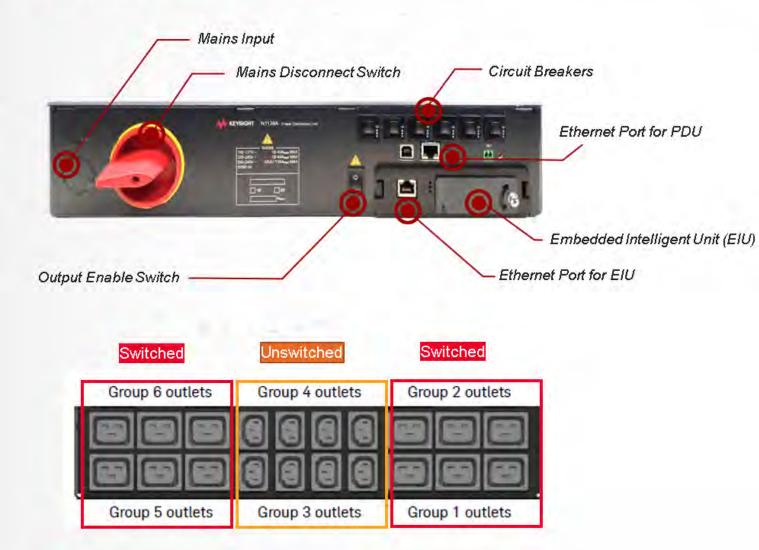
- Faster 80% Debugging
- Supports light and dark theme, switch on-the-fly, individually saved user's preference
- Designed for debug efficiency and accelerates i3070 programming mastery
- BT-Basic still supported
- Full-featured text editor for testplan modification
 - Auto indent, multiple tabs, customizable text colors, auto-suggestion with intellisense, interactive guarding, ballooned tool tips and many more

Automation Enabler

Benefits


- IPC standard, common . communication language
- Understand your system's . operating efficiency

13070 Finite State Machine


3070

KEYSIGH1

Data exchange with MES systems .

Smarter PDU

Benefits

- Slimmer profile helps to shrink footprint
- Pathwave Manufacturing Analytics (PMA) Ready
- Support future enhancements such as real-time power monitoring, power saving features
- Upgradable firmware

