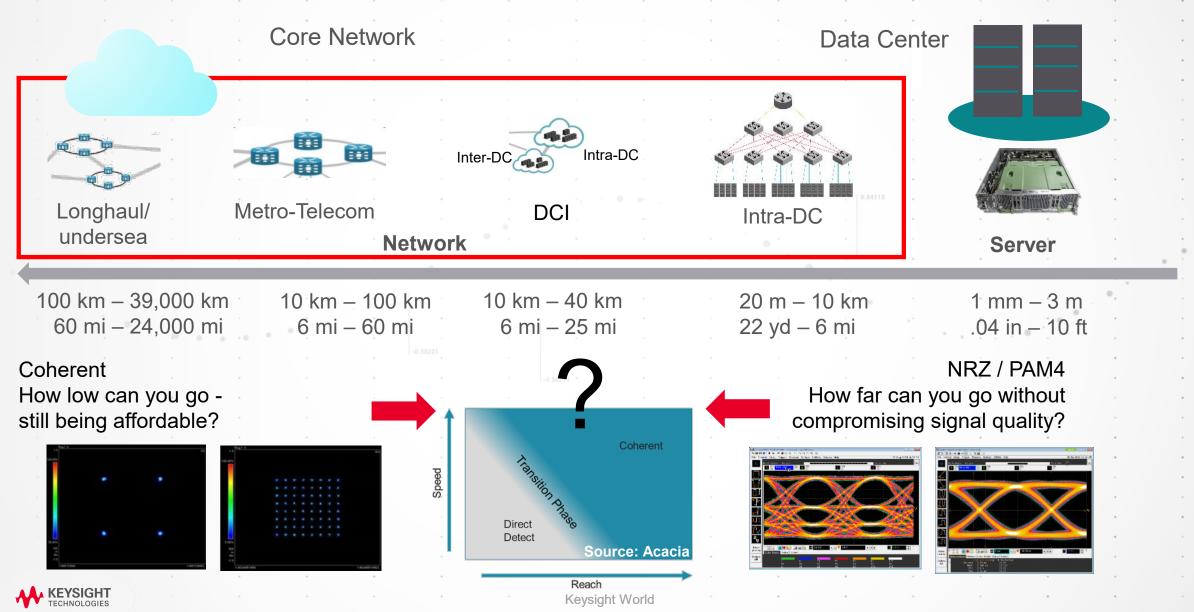


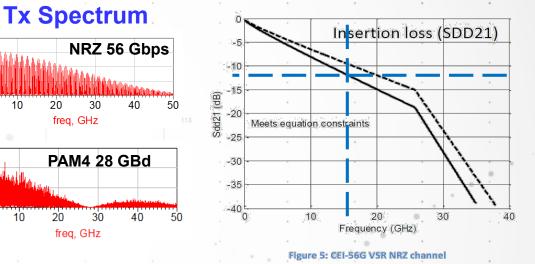
400G: Looking Forward to 800G and Terabit Speeds

Greg D. Le Cheminant Measurement Applications Specialist, Digital Communications Analysis Internet Infrastructure Solutions / Keysight Technologies


Agenda

- 400G Technologies Landscape
 Why PAM4
 - o Status of today's 400G/800G Standards?
- PAM4 From Simulation to Measurements
- 400G → 800G Measurements
 - PAM4 Device Characterization
 - o Direct Detect Output (Transmitter) Test
 - Coherent Optical Test
 - o Layer 2-3 Analysis
- Summary

Wireline Internet Infrastructure



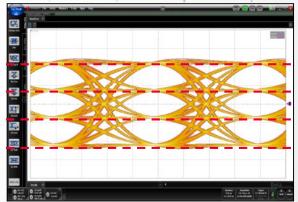
Why Does the Industry use PAM4?

ENABLES HIGHER DATA THROUGHPUT

- NRZ > 28 Gb/s limits trace length or increases cost due to more expensive PCB material
- PAM4 yields 2 bits / symbol
 - Effectively halves the channel BW needs
- Enables designers to develop products that meet the cost structure and are based on mature 100G optical components.
- PAM4: Pulse Amplitude Modulation 4-level
- 2 bits of information in every symbol
 - 2x throughput for the same baud rate
 - ✓ 26.56 GBd PAM4 = 53.125 Gb/s
- Higher SNR requirement, more susceptible to noise \rightarrow 3 eyes vs. 1 eye \rightarrow FEC essential
- More complex PHY Chip design, linear TIA and **RF** driver Amp

30

30


40

frea. GHz

20

20

freq, GHz

State of the '400G Class' Standards

CURRENT GENERATION - 50G LANE RATE

Direct Detection

	Standard	Description	Status
\checkmark	OIF-CEI-56G	5 reaches, PAM4 up to 29 GBd, NRZ up to 58 Gb/s	Released
\checkmark	IEEE 802.3bs 200/400G (Ethernet)	Medium reach SMF + C2C, C2M, PAM4 @ 53.1 & 26.6 GBd	Released
\checkmark	IEEE 802.3cd: 50/100/200G (Ethernet)	Short reach MMF + C2C, C2M, backplanes & cables, PAM4 @ 26.6 GBd	Released
1	64G Fibre Channel	100 m - 2 km reaches in MMF & SMF, PAM4 @ 28.9 GBd	Complete, pending publication
\checkmark	100G Lambda MSA Group	2 m >= 2 km in SMF, 8 x 53.125 Gb/s or 4 x 106.25 Gbps PAM4	Released
	IEEE 802.3cm 400G	Short reach in MMF, PAM4 @ 26.6 GBd	Under development
	IEEE 802.3cn 50/100/200/400G	>10 km SMF (target 40 km), PAM4	Under development
-			· · · · ·

Coherent Detection

Standard	Description	Status
OIF 400ZR	80 - 120 km SMF, DP-16QAM @ 60 GBd, coherent	pending
IEEE 802.3ct 100/400GBaseZR	80 - 120 km SMF, DP-16QAM, coherent, (based on OIF 400ZR)	Under development

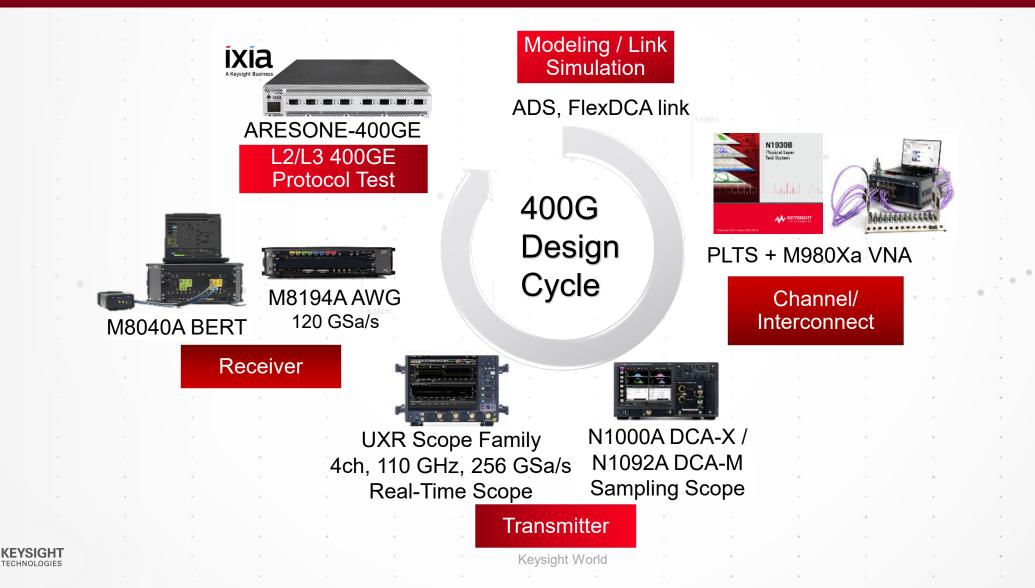
Next-Generation '800G Class' Standards

112G LANE RATES

Standard		Descript	tion				Status	;						
OIF CEI-112G	5 reaches PAM4, CNRZ-5 * mainly C2C				Projec	Project starts for 5 reaches, C2M at 5 th draft								
IEEE 802.3ck						First baseline draft for C2M, May 2019 (based on OIF CEI-112G-VSR, MR, and LR)								
Fibre Channel PI-8	128GFC	Moving c	loser to Eth	ernet ba	aud rate		Projec	t Start						
	•						• 1			•	•			•
									÷			•	•.	
										11.4		•		
													•	•
										s.				
						•	•							
												•	•	

* CNRZ-5: Chord Signaling NRZ-5 --> 5 bits transferred over 6 wires

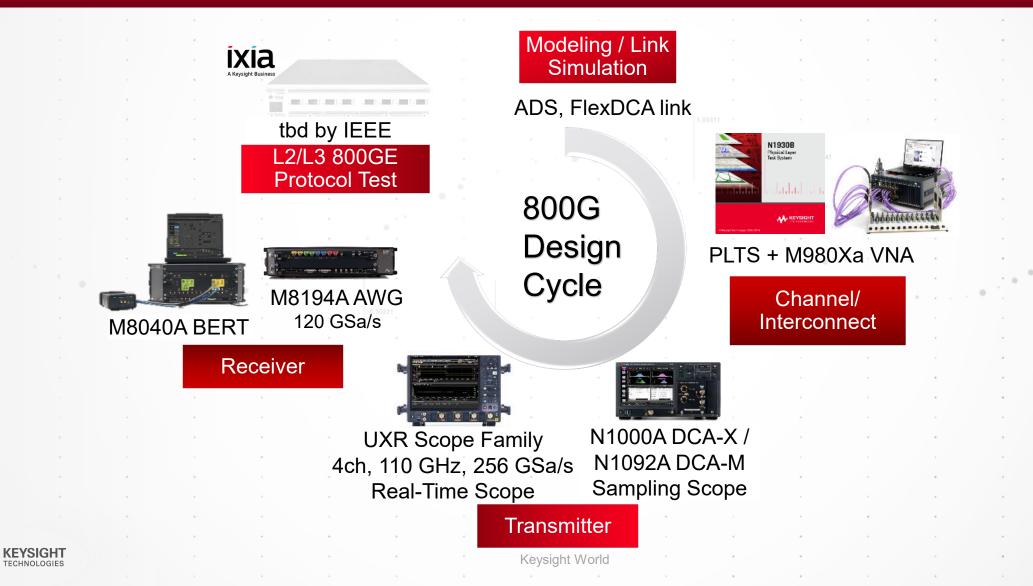
-2.502271


Is 800G Really Starting Yet?

- First equipment using 400G is close to deployment
- Few remaining initial wave of '400G class' standards finishing up
- No 802.3 official study groups started for first 800G optical links yet, will follow electrical groups
- Electrical chip-to-module, chip-to-chip, and backplane interface projects have started supporting >112 Gb/s per lane

400G Solution Overview

END-TO-END SOLUTIONS FROM KEYSIGHT FOR DIRECT DETECTION

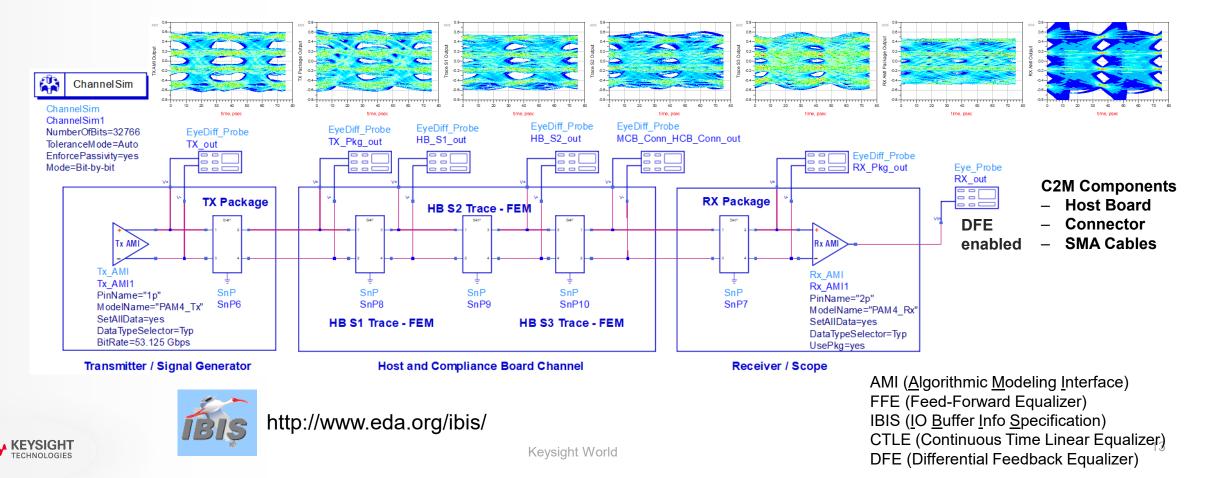


•

. 10

800G Solution Overview

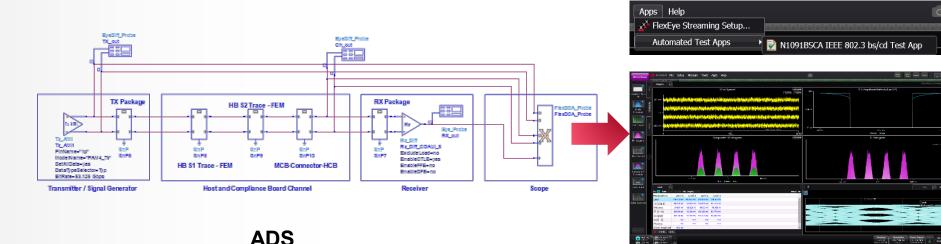
END-TO-END SOLUTIONS FROM KEYSIGHT FOR DIRECT DETECTION



PAM4 From Simulation to Measurements

PAM4 Channel Simulation with AMI Model

EXAMPLE: 400G CHIP-TO-CHIP (C2C) TEST BENCH SETUP


- Keysight ADS SW provides comprehensive PAM4 Channel Simulation Analysis using vendor IBIS-AMI models
- AMI Models provided by Chip Vendors, encapsulating TX & RX performance without disclosing Chip Vendors IP
- Test Setup: TP0 to TP5 (ball-to-ball)

Correlate PAM4 Simulations with Measurement

ADS 2019 TO FLEXDCA "CONNECTED FLOW"

- Connects simulation and measurement domains seamlessly: <u>"Design to Test"</u>
- Uses the same measurement algorithm and methodology on both simulated and measured waveforms
- Expands ADS PAM4 measurement capabilities to include <u>Jitter analysis and TDECQ</u>
- Runs <u>compliance apps</u> on simulated and measured waveforms

FlexDCA – Eye/Jitter Analysis

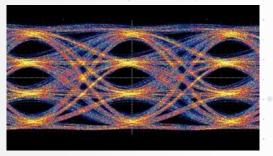
Compliance Apps

Scope goes here...

Transmitter compliance measured at TP0a

DCA-X Oscilloscope Measurement Domain

Simulation Domain

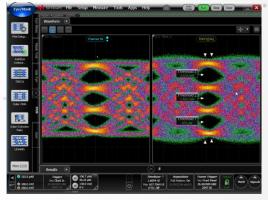

PAM4 Device Characterization

Optical Transceiver Modules Compliance Tests

400GBASE-LR8/-FR8

IEEE802.3bs Annex 120E Chip-to-module 200 Gb/s four-lane Attachment Unit Interface (200GAUI-4 C2M) and 400 Gb/s eight-lane Attachment Unit Interface (400GAUI-8 C2M)

26.6GBd PAM4


Electrical Tx test Linearity, ISI, Mask (Waveform analysis)

Electrical Rx test SRS, Jtol (BER) **IEEE802.3bs clause 122** Physical Medium Dependent (PMD) sublayer and medium, type 200GBASE-FR4, 200GBASE-LR4, 400GBASE-FR8, and 400GBASE-LR8

Optical Rx test SRS, Jtol (BER) Optical Tx test TDECQ, OMA, OER

(Waveform analysis)

26.6GBd PAM4

400GAUI-8 C2M 4

400GBASE-FR8/LR8

SRS - Stressed Receiver Sensitivity Jtol – Jitter Tolerance

Keysight World

Optical Transceiver Modules Compliance Tests

400G SOLUTIONS FOR DIRECT DETECTION

M8040A BERT System M8045A Pattern Generator M8046A Analyzer Module M8057A/B Remote Head M8054A interference source or M8195A/M8196A AWG Tx TestsTx TestsControlCon

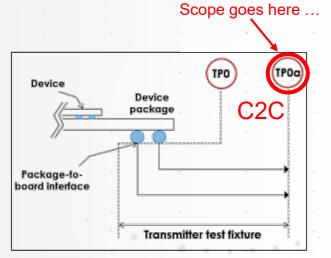
Electrical

Optical

DCA-X Oscilloscope N1000A DCA-X Sampling Oscilloscope N1060A Precision Waveform Analyzer

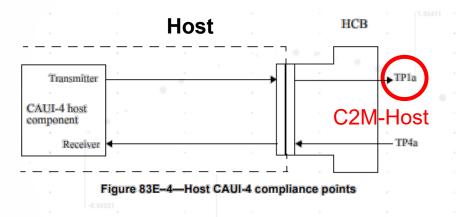
Lightwave Measurement System

8164B Mainframe 8149x optical Ref Tx 81609A Tunable Laser Source 81576A Optical Attenuator

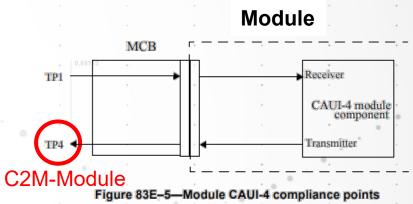


Keysight World

Direct Detect Output (Transmitter) Test


Where Do the Tx Parameters Get Tested?

IEEE 802.3BS ELECTRICAL TX TEST POINTS



Transmitter compliance measured at TP0a

Chip-to-Chip (C2C) at TP0a (custom fixture)

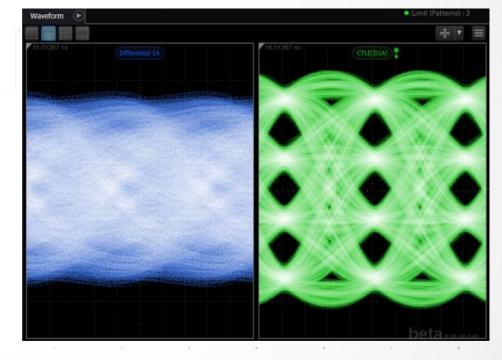
Chip-To-Module (C2M) at TP1a (use compliant fixture)

Chip-to-Module Module Output (C2M) at TP4 (use compliant fixture)

Measurement Challenges for PAM4 Test

NEW ANALYSIS METHODOLOGY REQUIRED TO ANALYZE DEGRADED SIGNALS

Baud rates continue to increase (from 26 to 53 GBd)

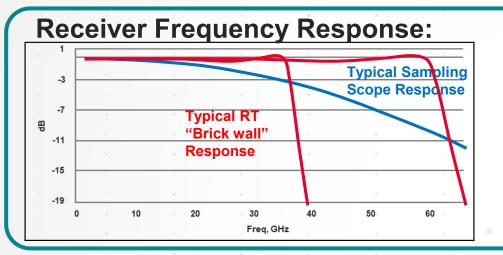

- o Standards (IEEE 802.3bs/cd, CEI 4.0,...) require:
 - higher bandwidth test equipment
 - ✓ "ideal" 4th Order Bessel-Thomson reference receiver response
 - equalization to open signals for analysis

Degraded PAM4 Eyes with higher Baud Rates

- o Signal-to-Noise penalty of $20 \cdot \log(1/3) = -9.6$ dB (vs. NRZ) making PAM4 more susceptible to noise
- Inherent ISI in PAM4 signals reduces EW/EH margins
- Channel loss often results in closed eyes making analysis difficult
- Requires low noise reference receivers and advanced clock recovery

Complex New Measurements

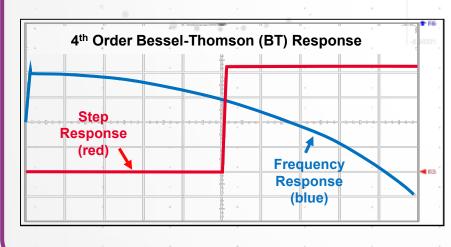
o Requires advanced analysis tools



Raw signal w/o EQ

After EQ

Compliant Frequency Response (Reference Receiver)



Scopes have different frequency responses:

- Will result in different eye/waveform shapes and amplitudes

 → different measurement results
- To achieve 33/40 GHz 4th Order BT response on a RT scope, must start with > 60 GHz "brick wall" response, BW must be adjustable

To provide more measurement consistency, most standards now specify BW and shape.

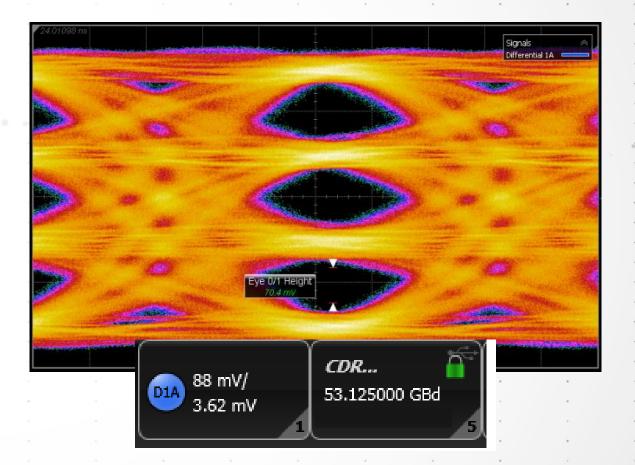
Examples (26 GBd PAM4; 53 Gb/s):

• IEEE 802.3bs™/D3.5 (Ethernet)

Clause 120D.3.1 200GAUI-4 or 400GAUI-8 transmitter characteristics: "A test system with a fourth-order Bessel-Thomson low-pass response with 33 GHz 3 dB bandwidth is to be used for all transmitter signal measurements, unless otherwise specified."

• CEI-56G-VSR-PAM4

Section 16.3.4 Output Differential Voltage, pk-pk


"The waveform is observed through a fourth-order Bessel-Thomson response with a 3-dB bandwidth of 40 GHz using a QPRBS13-CEI pattern."

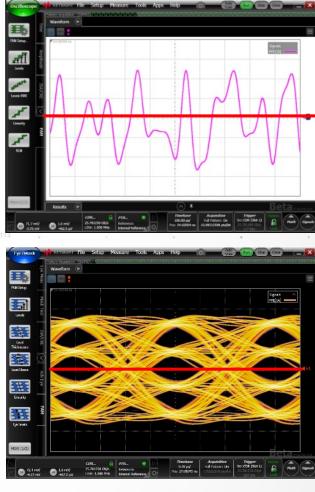
Bandwidth for "112G" (56 GBd)

PROPOSED 43 GHZ BESSEL

- 43 GHz Bessel response is deemed to be representative of "112G" transmitters (chip -> package -> fixture)
- Will this be sufficient BW for Tx characterization? Will 43 GHz BW penalize (reduce EH/EH margins) designs with better SI performance?
- 43 GHz BW usage not finally set, may change to higher BW (>= 50 GHz)

Clock Recovery for PAM4 Designs

Clock recovery (CR)


- Recovers a clock for the Rx to use in real systems
- Scopes need to emulate CR used in real Rx to track out low-frequency jitter, trigger the scope

PAM4 adds complexity

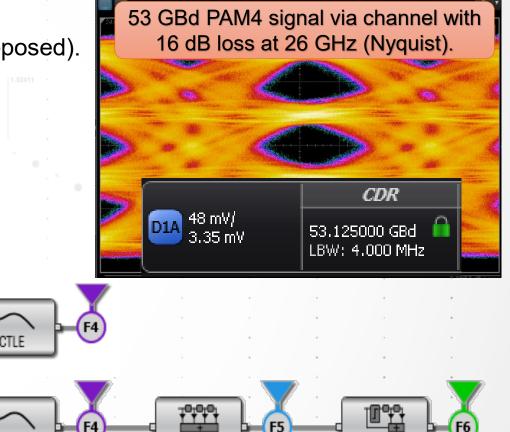
- Data pattern affects transition density
- Transitions no longer only at 0V diff
- OIF-CEI proposal:
 - 1 detector: 0V crossing
 - allow all edges that cross to be counted
- CR Loop BW <u>reduced</u> from 10 MHz to ~ 4 MHz (IEEE 802.3bs/cd and CEI-56G-PAM4, same for 112G standards)

Instrument clock recovery

- Real-time oscilloscopes use software CR
 - Transition level qualified SW CDR
 will include 0-3/3-0 and 1-2/2-1 level transitions
- Equivalent-time oscilloscopes (aka Sampling scopes) use hardware CR
 - Existing Keysight HW clock recovery designs work on PAM4 signals
- CR needs to be able to lock onto "closed eyes"

Analyzing Degraded PAM4 Signals at 53 GBd (112G)

HIGHER CHANNEL LOSS, XTALK, AND REFLECTIONS AT 53 GBD (106 GB/S)


C2M Channel Insertion Loss (IL): Up to 16 dB at 26.56 GHz (proposed). Whole link insertion loss can be more than 20 dB.

Step 1: Scope must obtain CR lock (SW or HW) in order to analyze/equalize signals

- Ensure the CR in your instrument can lock onto severely closed eyes
- Step 2: Equalize the signal and analyze

• **"56G" Today:** only uses CTLE (up to 9 dB gain)

 "112G" Future: will likely require a combination of CTLE, FFE (5 tap?, 12 tap?), and/or DFE

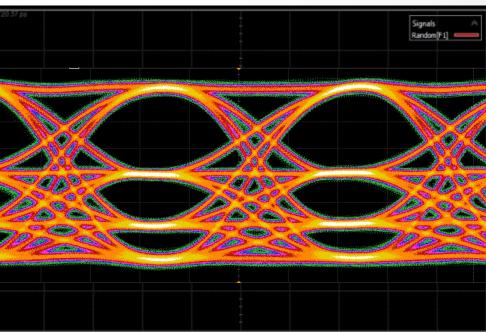
CTLE - Continuous Time Linear Equalizer

D5A

D5/

FFE - Feed Forward Equalizer, aka LFE, Linear Feedforward Equalizer DFE - Decision Feedback Equalizer

Ceysight World


Which Tx parameters Get Tested?

KEY PAM4 MEASUREMENTS FOR ELECTRICAL TRANSMITTERS

- Eye Width (EW), Eye Height (EH)
- Eye Symmetry Mask Width (ESMW)
- Output waveform
 - Level Separation Mismatch Ratio
- Signal-to-noise-and-distortion ratio (SNDR)
- Output jitter

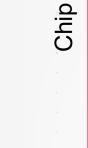
J_{RMS}
J3u (e.g. IEEE 802.3cd)
J4u (e.g. IEEE 802.3bs and CEI-56G-MR/LR)
Even-Odd Jitter (EOJ)

While these parameters may sound familiar to you, they are measured very differently compared to legacy NRZ designs

Infiniium UXR-Series Real-Time Oscilloscope and N1000A DCA-X Oscilloscope

ENGINEERED FOR TESTING 400G/800G DESIGNS ... AND BEYOND

N1000A DCA-X Equivalent-Time "Sampling" Oscilloscope N1060A Precision Waveform Analyzer (aka "MegaModule")



UXR-Series Real-Time Oscilloscope

Which Scope Should I Use to Characterize PAM4 Signals?

Compliance

Soarc

System

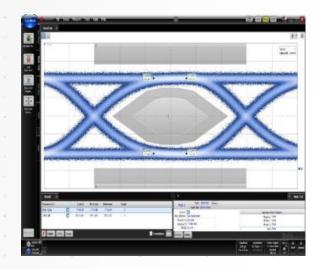
Sampling Scopes (SS), "DCA"

Best for validating/characterizing PAM4 designs

For applications that place top priority on waveform precision:

- Highest Fidelity
 - ✓ Low noise
 - ✓ Ultra-low jitter
 - ✓ High Bandwidth
 - ✓ Highest Resolution (16 bits)
- Modular Platform
 - ✓ Electrical/Optical
 - ✓ TDR/TDT
- Lowest price for same BW
- PAM4 Analysis SW
- PAM4 Tx Test "Compliance" SW

Troubleshooting


Real-Time Scopes (RT) ✓ Best for troubleshooting PAM4 designs

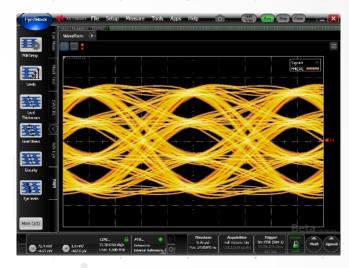
The most versatile tool for all areas of high-speed digital communications:

- Best for troubleshooting
- Captures one-time (glitch) events
- No explicit trigger required
- Does not require repetitive signals for pattern waveform measurements
- N7004A Optical-to-Electrical Converter
- PAM4 Analysis SW
- PAM4 Tx Test "Compliance" SW applications
- PAM4 SER/BER "Error Capture" and "Decode"

Key Measurements for Optical Direct Detection Tx

NRZ Transmitters

- Optical Modulation Amplitude (OMA) (difference between the 1 level and 0 level)
- Extinction Ratio (ER) (ratio of 1 and 0 level)
- Transmitter Dispersion Penalty (TDP)
- Eye-mask

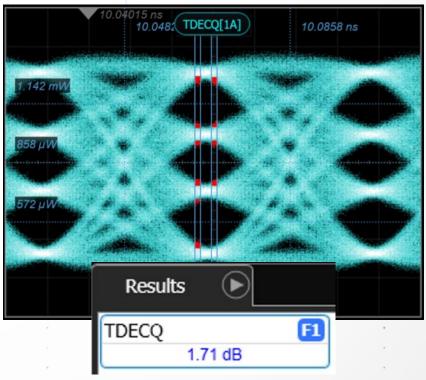

KEYSIGH

PAM4 Transmitters

Outer OMA

(difference between the 3 level and 0 level)

- Outer ER (ratio of 3 and 0 level)
- Rise/fall times (per IEEE 802.3cd)
- <u>Transmitter and Dispersion Eye</u>
 <u>Closure for Quaternary (PAM4) (TDECQ)</u>
 - Replaces mask testing!
 - Requires equalizers and "short patterns" (SSPRQ...no more PRBS31 for TX test).


TDECQ Measurement Process

FROM IEEE 802.3BS

- Penalty against ideal Tx assuming a Reference Rx
 - Analog bandwidth of nyquist (half of actual baudrate)
 - TDECQ* equalizer: Virtual 5 tap, T spaced FFE ref. equalizer (EQ taps optimized to minimize TDECQ penalty
- SSPRQ* test pattern (2¹⁶-1 length)
- Includes test fiber dispersion (single-mode)
- Oscilloscope noise measured and mathematically 'backed out'
- Histograms constructed to assess eye closure relative to OMA and compute an effective power penalty in dB for a target BER*. This is the TDECQ result. (Note: A smaller number is better)
 * 2.4 10⁻⁴ for IEEE 400GBase
- TDECQ <u>indirectly</u> measures SER (symbol error rate) using a scope, no BERT required

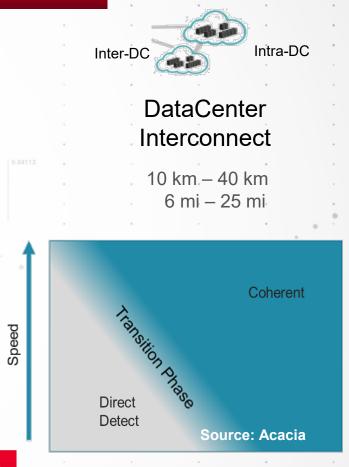
SSPRQ - Short Stress Pattern Random QuaternaryTDECQ - Transmitter Dispersion and Eye Closure QuaternaryOMA - Optical Modulation AmplitudeKeysight World

Coherent Optical Test

Coherent Moves into the Data Center

COHERENT VS PAM4 - DATA CENTER INTERCONNECT 40-120KM

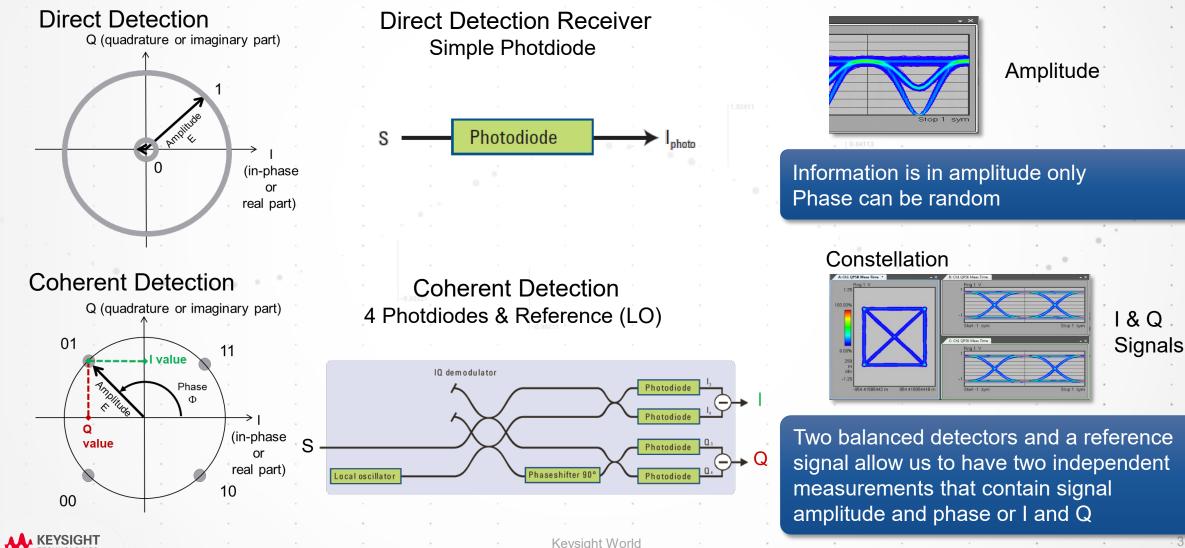
Coherent


- Higher cost
- Higher power consumption
- Higher latency (depends on DSP)
- CD compensation adaptive to link due to DSP
- In DWDM system up to 10 Tbit/s (20 Tbit/s @ 16QAM, 30 Tbit/s @ 64QAM)

PAM4

- Lower cost
- Lower power consumption
- Lower latency (but affected by CD compensation)
- Needs CD compensation depending on link length
- In DWDM system up to 4 Tbit/s
- Not true for applications that require higher speed and longer reach

Conclusion from workshop "DSP for short-reach optics" at OFC 2018


Speed-class	Coherent	Direct-Detection
400G (2019+)	> 10 km	< 10 km
800G (2023+)	> 2 km	< 2 km
	Keysight World	

Reach

Direct Detection vs. Coherent Detection

A COMPARISON OF PRINCIPLES

Can we analyze Complex Modulated Signals with Conventional Direct Detection Methods?

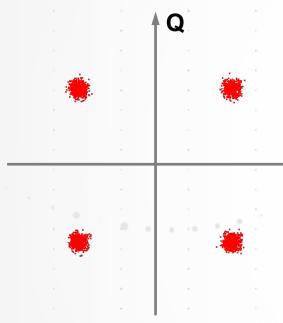
QPSK Example:

QPSK constellation map

Need amplitude AND phase sensitive measurement!

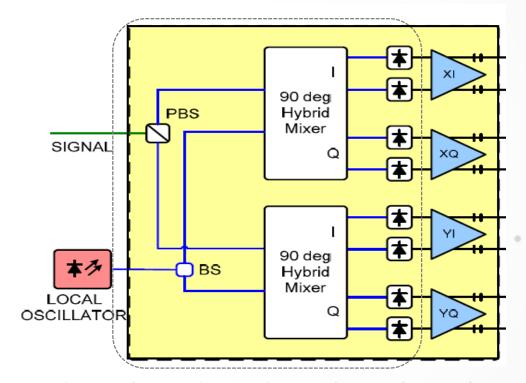
This is the region of transitions between symbols

Power vs time


This is the region where the symbol/vector state should be stable and where communications quality is assessed

Dual Polarization Power Measurement

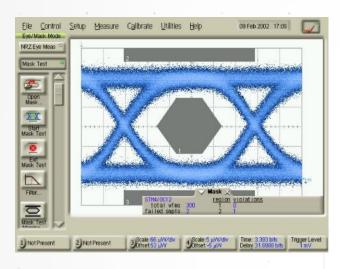
Keysight World


Can we analyze Complex Modulated Signals with Conventional Direct Detection Methods?

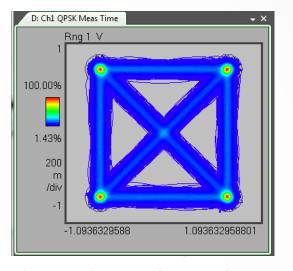
QPSK Example:

QPSK constellation map

Need amplitude AND phase sensitive measurement!


Source: OIF, Document IA # OIF-DPC-RX-01.0

OIF implementation of a coherent optical dual polarization receiver


Keysight World

Different Metrics Required for Direct Detection and Coherent Transmitters

OOK (NRZ / PAM4)

- Q-factor
- Eye mask
- TDECQ
- Timing jitter
- BER
- OSNR

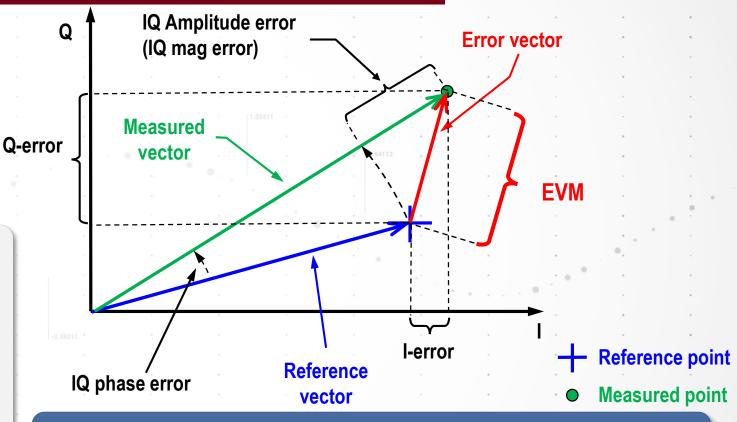
Complex Modulation

- EVM
- IQ Imbalance, IQ Offset
- Quadrature Error
- Frequency Offset
- BER
- OSNR

Keysight World

Error Vector Magnitude

QUALITY MEASURE FOR COMPLEX MODULATED DATA SIGNALS

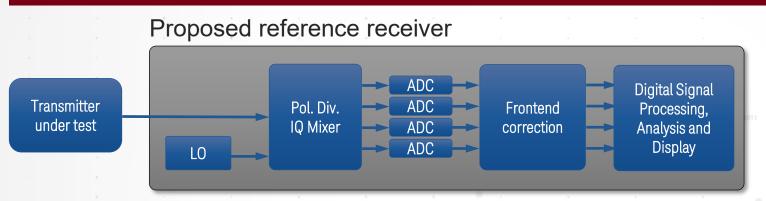


- Needs reference receiver comprising
 - Calibrated optical front-end
 - Real-time ADC
 - Defined signal processing blocks

EVM
$$[k] = \sqrt{I_{error} [k]^2 + Q_{error} [k]^2}$$

$$\frac{\sqrt{\frac{1}{N} \cdot \sum_{k=0}^{N-1} (I_{error} [k]^2 + Q_{error} [k]^2)}}{|EVM \text{ normalization reference}|} \cdot 100\%$$

Where k = symbol index N is the number of EVM points $I_{error} = I_{Meas} - I_{Ref}$ $Q_{error} = Q_{Meas} - Q_{Ref}$


The Error Vector connects the measured vector and the reference vector!

An Error Vector = 0 means we have an ideal signal!

Method to Determine EVM

ADDITIONAL IMPAIRMENT ANALYSIS FEATURES

Proposed reference receiver for coherent transmitter testing:

- Dual-polarization coherent receiver
- Real-time data acquisition (four synchronized ADC channels)
- Frontend correction

KEYSIGH1

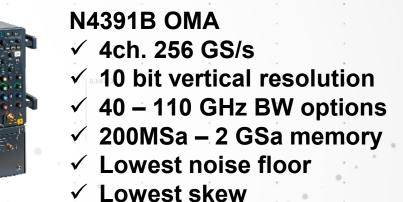
Digital signal processing

Reference receiver HW & SW characteristics need to be specified for the development of an EVM specification

M8290A modular OMA

- ✓ Optimized for up to 400G signals
- ✓ Most compact
- ✓ Most affordable
- ✓ 4ch. 92 GSa/s
- ✓ 40 GHz
- ✓ 512 kSa memory
- ✓ Optical Input
- ✓ Electrical Inputs

Keysight supports these efforts in:


Outlook

LOOKING TOWARDS 800G

- First vertically integrated non-interoperable solutions announced by Infinera and Ciena
 - Transmission rates from 100G to 800G
 - Up to 100 GBd symbol rate
 - Advanced signal processing methods like probabilistic constellation shaping and Nyquist sub-carriers
- Second generation of 800G solutions expected for 2021
 - Lower power consumption
 - Lower footprint
 - o Interoperable

The test equipment is ready

M8194A AWG

- ✓ 4ch. 120 GSa/s
- ✓ > 45 GHz 3-dB bandwidth
- ✓ Signal generation up to 50 GHz
- ✓ 512 kSa memory

DP-16 QAM constellation at **100 GBd** Optical measurement

Layer 2-3 Test

400G (PAM4) Changes What Needs to be Tested... With FEC Latency Non-blocking 100% 2x200, 4x100, throughput **Multi-rate** 8x50GE fan-outs **Perfor-**Ethernet mance port 400GE **TEST** More interoperability **Auto** RFC **Benchmark** negotiation RFC 2889, RFC 2544 Link 32x400GE + training DACs to 3-meters

Keysight World

KEYSIGH1

- 41

FEC Analysis is Critical

400GE STD, FEC, WHAT TO LOOK FOR

- Forward Error Correction (FEC)
 - Corrects errors on the receive side (Goal: no packet errors)
 - 400G FEC corrects up to 15 symbol errors per code word
 - An uncorrectable code word results in equivalent of
 - ~15 64B packets

CRITERIA

Pre FEC BER 10⁻⁴

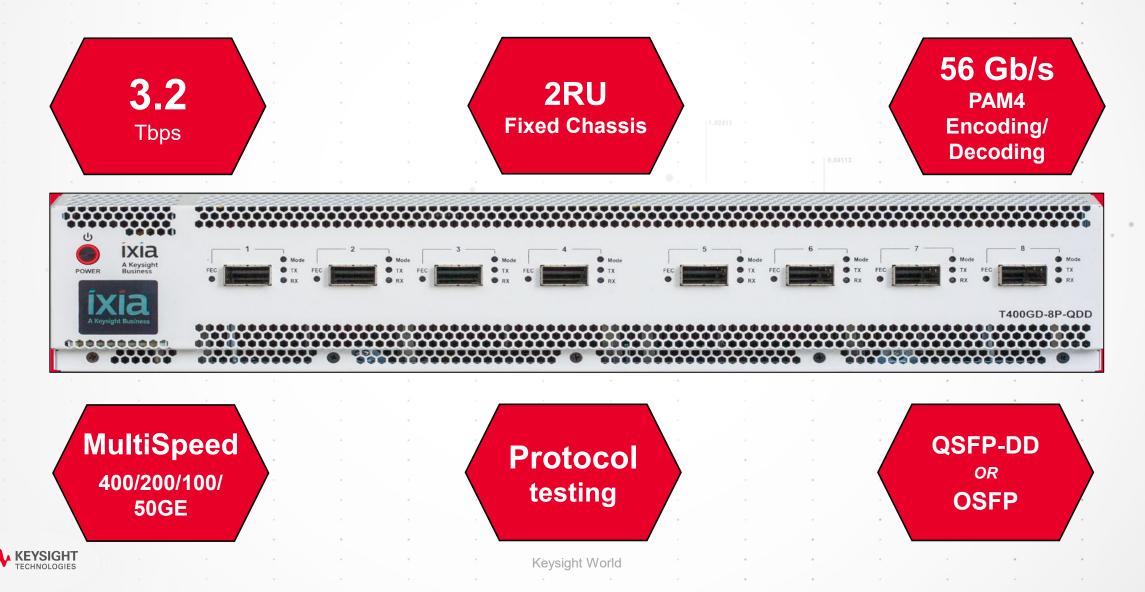
Frame Loss Ratio

No uncorrectable code words

HEALTHY?

Look beyond "lack of CRC errors", pre FEC BER & FLR

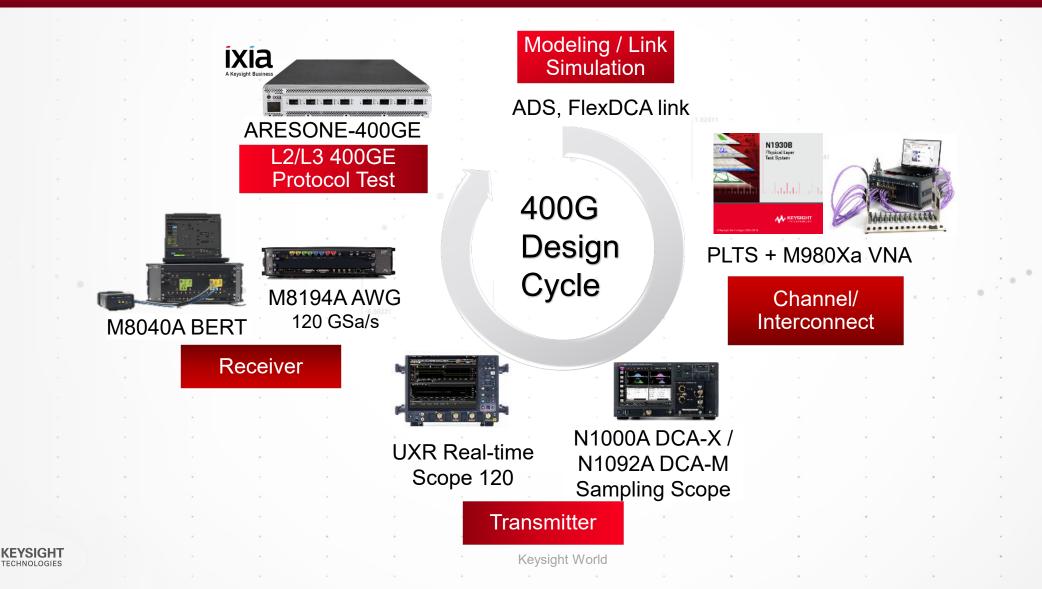
Review how close to the limit of FEC


Monitor error distribution per physical lane

Monitor symbol error density

FEC Total Bit Errors	1,685,086,529			
FEC Max Corrected Symbols	15			
FEC Corrected Codewords	787,415,758			
FEC Total Codewords	8,747,730,910			
FEC Frame Loss Ratio	0.00e+000			
pre FEC Bit Error Rate	3.54e-005	J		
FEC Codeword with 0 error	7,960,315,152	-		
FEC Codeword with 1 error	551,108,911			
FEC Codeword with 2 errors	200,069,411			
FEC Codeword with 3 errors	26,209,344			
FEC Codeword with 4 errors	8,176,726			
FEC Codeword with 5 errors	1,363,216			
FEC Codeword with 6 errors	382,557			
FEC Codeword with 7 errors	77,640			
FEC Codeword with 8 errors	21,150			
FEC Codeword with 9 errors	4,968			
FEC Codeword with 10 errors	1,349			
FEC Codeword with 11 errors	356			
FEC Codeword with 12 errors	93			
FEC Codeword with 13 errors	26			
FEC Codeword with 14 errors	8			
FEC Codeword with 15 errors	3	-		
FEC Uncorrectable Codewords	0			

Introducing ARESONE-400GE



. 43

Summary - Keysight Provides Industry Leading Tools

FAST AND ACCURATE CHARACTERIZATION OF PAM4 DESIGNS

Questions?

Please stop by the demo booth

Keysight World

. 46

Acronyms

AUI = Attachment Unit Interface C2C = Chip-to-ChipC2M = Chip-to-ModuleCDR = Clock and Data Recovery CTLE = Continuous Time Linear Equalizer BER = Bit Error Ratio BUJ = Bounded Uncorrelated Jitter (used to emulate crosstalk) DFE = Decision Feedback Equalizer DUT = Device Under Test EW = Eye Width EH = Eye Height FEC = Forward Error Correction FFE = Feed-Forward Equalizer

NRZ = Non-Return to Zero (Refers to 2 level signaling or PAM-2) PAM-n = Pulse Amplitude Modulation, where n = number of levels RJ = Random Jitter RS = Reed Solomon SRS = Stressed Receiver Sensitivity SER = Symbol Error Ratio SIRC = System Impulse Response Correction SJ = Sinusoidal Jitter SMF/MMF = Single-mode fiber, Multimode fiber TDP = Transmitter and Dispersion Penalty TDEC = Transmitter and Dispersion Eye Closure TDECQ = Transmitter and dispersion eye closure quaternary (for PAM4)

